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ABSTRACT

The concept of a “projection function" in a finite~dimensional
real or complex normed linear space B {the function PM which carries
every element into the closest element of a given subepace M) is set

forth and examined.

If dim M = dim H -~ 1, +then Pll is lipear. If PN isa Jinear for
all k~dimensional subspaces N, where 1 £ k < dim M, then Pll ia
linear.

The projective hound {, defimed to be the supremum of the
operatot norm of PH for all subspaces, is in the range 1 £ < g,
and these limits are the best possible. For norms with 0 = 1,

PH is alwaya linear, and a characterization of these norms is given.

iIf H alao has an inner prodect {defined independently of the
norm), so that a dual morm can be defined, then when P, is linear
its adjeint P’f is the projection on (kernel I’“)L by the dual
norm, The projective bounds of a norm and its dual are equal,

The notion of a psendo-inverse F¥ of o linear tramsformation F
is extended to non-Buclidean norms. The distance from F to the set
of linear transforwations G of lower ramk (in the sense of the
operator norm ||F — G} } is ¢/IF*ll, where ¢« 1 if the range of F
fills its space, and 1 £ ¢ £ 0 otherwise, The nerms on both
domain and range spacea have Q= 1 if and only if (F*)* « F ror
every F, This condition is also sufficient to prove that we have
(F+)H - (E‘H)+, vhere the latter psendo-inverse is taken using dual
norma.

In all results, the real and complex cases are handled in a
comp letely parallel fashion.
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CHAPTER 1
PRELIMINARY DEFINITIONS AND RESULTS

Let Hn be an n~dimensional real or cowplex Hilbert space, where
n is a positive integer. The elements x,y of Hn may be thought of
a8 column vectors, and the inner product (x,y) may be thought of

n
as Zi 1 ;i A For the fundamental properties of I!n, see any

standard text (e.g., Halmos).

The real and complex cases will be handled in a completely
parallel faghion, although most treatments of thia subject handle
the real case only, or handle the two cases separately. The term
"scalar” will therefore be used to denote either & real or a complex

aumber.

A function F: H--n- !ln, where H. and Hn have the same scalar
field, is celled homogeneous if it is continmuous and F{ex) = e¢F(x)
for every xeﬂm and every scalar ¢. The homogeneous function F is
called lipear if F(x+y) = F(x)+F(3y) for all x,y eH .

A real-valued function o on H is called a porm if x40 =
oafx) >0, «(ex) = [ela(x) amd o(x+y) s «(x)+a(y) for all

x,y&ﬂm and every scalar c.

¥e shall need the following concepts from convexity theory (see
also Householder pp. 38-45).

A set of the form B = {xeﬂn lu(x}éc% s+ vhere % is a norm

and ¢ is a positive constant, is called an eqnilibrated cenvex body.
Since

«(x) = inf {b} b>0, (o/B)xen},

B and ¢ determine o« uniquely. It is sometimes converient, especially



in illustrations, to use an equilibrated convex body to represent

a norm (see Fig. 1). N\ X2
T

A k-dimensional flat (mometimes
called a linear manifold) in H_is a v 2 +¥
gubset of the form u+M {that is, x]_
the =et {u-&:l:el&] ), where M ig .
a k-dimensional subszpace of Hn' If B M
un'¢u+M, then clearly mw+M=u'+M
An {n=1)- dimensional flat is called
e rig I o e

hyperplane at u in real H_,

For r;{ 0, a set of the form 2
Sxeﬂnl (v,x)= -1] is the hyperplane [v/(v,v)] + {v}‘l' , which does
not contain 0., Conversely, if the hyperplane u+ M dees not contain
the point 0, then it is equal to the set {x€¢E |(v,x)= 1}, where
u=nut+uy,, v el, w,eM and v= u2/(u2,u2).

A hyperplane u+M such that a{u)= ¢ and a{x)2 ¢ for all xeun+M
is called a support hyperplane for B at n, where B is the equili-
brated convex body described previously. (See Fig. 1.)

Theorem 3.1 let B = {xe¢R | x(x) € «{u)} be an equilibrated
convex body., Let u+ N he & flat of dimension <£mn-1 such that
a{x)2 x{u) for every xéu+N. Then there exists a suppert hyper-
plane u+ M for B at u such that u+N Ccu+ M.

Proof. 1If Hn ig a real Hilbert space, comvexity theory will
supply the proof (for example, see Eggleston p. 19).

If H is complex, them H with the new inmer product Re(x,y)
is o 2n~ dimensional real Hilbert space, & is still a norm, and
B+ N is & flat of dimenmsion <2n-1. Hence there is a support hyper—=
Plane u+M' for B at u in this new space such that u+N < u+ M,

Moreover, we can write



u+ M = {xélin \ Re(v,x)= 1}
for some v Eﬂn.

Since Re(v,u)=1, (v,u){0 and we can define wu' = u/ (v,u),
Then (v,u'}=1 and hence u' iz on the support hyperplane n+M',

Therefore

x(a)
x(u) £ wx(u') = ———L
(w) |(")“)‘ '
which implies that f{(v,u)} £1. Since Re{vyu)=1, this implies
that (v,u): 1.

Therefore, consider the set {x el [ {v,x}= 1} in the original
Hilbert space.. Since (v,m)=1, this set cah be represented as
u+M., It iz a support hyperplane for B at u hecause xeu+M =>
xeu+ M = x(x}2x{u).

Now let x be an arbitrary element of u+ N, Ther xéeu+M' and
hence Re(v,x)= 1. We can express x a8 xmu+x' vhere x'e N,
Then

1 = Re(v,x) = Re(v,u) + Re(v,x') = 1 + Re(v,x'),

and hence Re(v,x')=0 for all x'e¢ N. Therefore Re(v,-ix') =
Im(v,x') = 0 also, and (v,x')= 0. Comsequently (v,x) = (v,u)+
{(vox'}= 1 and x€u+M, This shows that u+N C u+M, which com
pletes the proof. l

For the special case dim N = 0, we have the following im-
portant result.

Corollary 1,2 An equilibrated convex body has at least one
support hyperplane at each houndary peint.

The norm of a homogeneous function F1 Hm-h Hn induced by the
norm « on H and the norm § on H is defined by



«(F(x))

HFlqu = ;:’6_ T sup  x(F(x)).

Blx)=1

The supremum is actually attained for some nonzero x, since the set
ix él{m‘ P(x)ra 1; is compact.

It P l{m-b Hn is linear, FH will represent the adjoint of F,
that is, (F(x),7) = (;,Fn(y)) for all x&H, yeH .



CHAPTER 11
DEFINITION OF THE PROJECTION FUNCTION

A norm « om Hn is ealled striotly convex if
sf(ex+ (1-c)y) 2 a(x) = afy)

for all scalare ¢ implies that x=y., In terms of the equi librated
convex body B = {x lo:(x) € 1} » & is strictly convex if every ome-
dimensional flat which dees not meet the interior of B meets B in
only one point,

YLet M be a subapace of Hn and let xeﬂn. The projection of x
onte M by « ia the element ye M which is closest to X, i.e., Buch
that

o(y-x) = inf {Oc(:-:)lzéll} . (1)

The existence and uniqueness of the projection are established by
the folloving theorem (see also Meinardus p. 2, Kéthe p. 347).

Theorem 2.1 Let ot be a strictly convex norm on Hn’ let M be a
subspace of Hn’ and let xeﬂn. Then there is a unique y¢M which
satisfies (1).

Eroof. Comsider the set M' = {zeM|o(s)>2w(x)}. For
all zeM', «(x)+a{z~x) > x{z) > 2 a(x); hence o{z=-x) > o(x)
= o{0~x), and the infimwe in (1) is not approached on ', Since
M-M' is compact, the infimmm in (1) is attained for some yeM,

Now let y'e M be such that «{y'~x) = x{y-x). Then for &l1
scalars ¢, ocy+ (I-¢)y' e M and hence

of e(y-x)+ (1~e)(5'-x) ) = o( cy+(l-e)y'=x )

¥ &{y~-x) =« afy'-x).



Since o is strictly convex, y-x = y'-x and ¥'=7y. | ]

The function Pu,oe which carries x into its projection on M
by o is called the projection function., = Henceforth, whenever the
notation PM,« is nsed, it is presumed that X is strictly convex and
M is a subspace of Hn or other appropriate Hilbert space. Where no
confuaion results, the shorter forms PM and P may he used.



CHAPTER ITX
BASIC PROPERTIES OF THE PROJECTION FUNCTION

The following theorem shows that the projection function is

"almoat linear®.

Theorem 3.1 The function P, x is homogeneous, and P(x+y) =
3
P{x)+y if yeM.

Proof. Assume, for purpose of contradiction, that ¥ is dis-
continuous at x. Then there will be a sequence {xi} such that

lim isoe X = X
and e P(xi) « z £ B(x),

or else {P(xi)} is anbounded. However, the boundedness of {P(xi )}
ig implicit in the proof of Theorem 2.1.

By the definition of P, we have
ot(P(xi}wxi) S O((P(I)-Ii)
tor every i. Take limits as i =20 to obtain
M(z-x) < «(P(x)- 1),
which implies that z = P(x), a comtradiction.

Fow let P(x)=u. Then o(u-x) ¢ a{s~x) for all seM, and
for any nonzero scalar e,

s{eu-cx) = let afu-x) s le| x(s~x) w o{es - ox),

which implies that x(cu-ex) < x{s=cx) for all scM. Hence we
have P(ox)=cu. For c= 0 this reault is trivial,



Now let yeM, We have
x{P(x)~x) < x{s-x),
o(P(x)}+y=(x+7)) € x(a+y-(x+7))

for all s¢M. Since s+ y also runs over all of M, the last inequality
implies that P(x+y) = P(x}+ 7. | |

Theorem 3.2 Every x eﬂn can be expresged uniquely as x = y+ T,
where Pn(y)a- 0 and zeM. Furthermore, z=P,(x).

Proof. We have x = (x~P(x))+P(x), and by Theorem 3.1,
P(x-P(1)) = P(x}-P(x) = 0, 80 the representation exists. If we
have x = y+ 1z, then P(x)} = P(y)+z = =z, 80 the representation is
unique, .

Theorem 3.8 For every projection functien npu,u"mt < g,

Proof. Let x be such that P, = «(P(x)) and «(x)=1.
If P(x)= 0, the result is trivial. If not, then

! = a(x) = x(0~x) > a{P(x) - x)
and WP = o(B(x)) ¢ «(P(x)-x) + (2),
which imply that [{P] , < 2. ]

It will be shown later (Chapter 5) that this inegquality ig the
beat poasible,



CHAPTER IV
LINEARITY OF THE PROJECTION FUNCTION

The projection function is mnot linear for every norm and sub-
gpace, For example, conzider the norm « on real Ha given by
x{x ,x ,x.}) = (x tixtix 4)*
1?72 1 2 3

and determine kernel Pli, ”

spanned by F= (yl, yz,ya). Minimizing «(x~ ¢y) over all real ¢ by

y where M is the one-dimensioral subspace

ordinary veriational techniques gives the result

'

3 3 3
kernal Pn,og = f‘(xl,xa,xs) | T)X) F Xy +TgTy = 0],

which is not a subspaece for all y. Hence PH “ is not linear for
¢l
all Y.

This example suggests the following characterization of linearity.

Theorem 4.1 The function l’,‘l o 18 linear if and omnly if
H4

kernel PM’“ is a suhbspace.

Proof. The necessity of the stated condition is obvious.
Let =x,ye Iln and decompose them as xax'+P(x), ¥« 3¥'+P(y),
according to Theorem 3.2. Then by Theorem 3.1,

P(x+y) = P(x"+ 3"+ P(x) + P(3)) = P(x'+¥') + P(x) + P(y).

Since x',y'e kernel P, x'+y'ec kernel P, and P(x+y) » P(x)+ P(y).

Hence P is linear. [ |
Theorem 4.2 If dim M= n-1, then PM o is linear.
¥

Proof. Tet xeH -M, oand let y=x-P(x). Then y£O0 and by
Theorem 3.2, yekernel P, Let L be the subaspace of all scalar
multiples of y. Them it iz clear that L ckernel P, since by
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Theorem 3.1 P{ey)m eP(¥)= 0 for all scalars c.

Now let ze kernel P, Since dim M=n-1, Hn is a direct sum
of M and L, and z= Z) + Zy) where % € L and zgeh{. By Theorem 3.1,
P{z) = P(z,)+ Zy = Z,. But P(2)= 03 hence Zg=0 and z=z e L,
Therefore La kernel P and P is linear by Theorem 4.1, ]

Theorem 4.3 1If P“ o 48 limear for all r-dimenssonal subspaces
Hd
M, where r2>1, then it is linear for all subspaces of higher dimen-

sion.

Proof, Tet N be a subspace with dim N>r, and assume, for
purpose, of contradietion, that PN is not linear. Then by Theorem 4.1
" ita kernel is not closed under addition, i.,e,, there exist two

elements x,, x, of kernel Py such thet PH(II"'Ia) =y £ 0.

Now choose an r—-dimensional subspace M of N whieh containa Y.
Then x,,X, € kernel B, but Pu(xl-& xe) = y4£ 0, which violates
the hypothesis. l
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CHAPTER V
THE PROJECTIVE BOUND

The real pumber Q{x) defined by

() = s:p “Pu’“”uo(

iz called the projective bound of X. The following theorem shows

that the supremmm is finite, and that fer 1 sk £n—-1 the supremunm

is attained for some k-dimensional subspace M.
Theorem 5.1 The sets of real numbers
8, = [u(Pn,d(x)) l x(x)=1, M is k—dinenaional}

for k= 1,2y...yn~1 are identical. Farthermore, Sk is bounded and
coptains its supremum Q{w).

Proof. Suppose ¢ eSk; we must show that ¢ F.S._.i for any
= 1,2,44.y0~1, For some k-dimensional subspace M and zome x eﬂn,

c = “(7)!
Y= PM(I)s

K(x) = 1.
If y=x, then ¢= 1 and ¢ eSj is easily shown,

If y£ x, ther o(z—x) > &(y=x) for all z eM, i.e., we have
®{z) > x{y~ x) for all EYy=-x+M, By Theorem 1.1 there is a support
hyperplane y=- x+N for the equilibrated convex body !z [ u(:)éa(y—-x)}
at y- X, such that y-x+M S y-x+N, that is, M<N, Tet L be
any j-dimensional subspace of N which contains y. Then o{z)* o(y~x)

for all seéy-x+L, that is, x(z~x)2x{y=-x) for all z eL. Hence
¥ = Pp(x) and cESj.
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Therefore, all the Sk are equal, and we need to prove the sec-

ond asgertion only for Sl'

Theorem 3.3 shows that Sl is bounded. Then either S, contains
itz supremum or there would be two sequences {xi‘ and {yi‘ such that
u(xi) n u(yi) = 1 for all i, and

a0 (P (x) ) = (o), (1)
1

where Li is the subsapace spanned by ME By taking appropriate sub-

sequences, we can also require that

im,  ox; = X (2)
Um ; L0 ¥y =
Mmoo PLi(xi) - W, (3)

If L is the subspace spanned by ¥, then clearly wel.

Now let z €Lj thepr z= ¢y for some scalar c¢. By the definitiom

of P, ,
Li

0&('xi - G'Ji ) = “( xi - PLi(Ii) )

for every i, Taking limits as i %00, we have o(x=-3) > x(x-w).
Since z €L was arbitrery, w- PL(x). From (2), «(x)= 13 from (1)
and (3), ®(w)= g{); hence Q(u)esl. |

From Theorem 3,3, we have
Corollary 5.2 For any strictly comvex norm &,
1 € 0(e) < 2.

The wpper limit is approached for striectly convex nerms which




approximate the "maximum morm"

o on real 52 given by

x(x)3%,) = max(ix] 5 ix,1 )

{See Fig. 2.) The lower limit
iz attained by the norms
described in the next chapter.

13
itlm{t-)ﬂ:p}
2 Y= PM(!)

x(x} =1
oc(y) =2

x
Fig. 2. A strictly convex norm

o for which J(x) iz close to 2.
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CHAPTER VI

PROJECTIVE NORMS

A strictly convex norm X on R for which 0{o)=1 iz called a
rojective norm, The immer product norm (x, x)i' is projective, and
g0 are the "elliptieal” norms (x,T(x)), where T is a positive-
definite self-adjoint linear transformation of Hn- later we shall

give exanples of nom—elliptical projective norms on real H For

2.
spacea of dimension three or higher, all projective norms are
elliptical, both in the real case (Kalmtani) and in the comp lex

case (Bohmemblust).

Lemma 8.1 Suppose X ig & projective norm, PM o is linear, and
?
N = kermel Pll,oc $
then M = kernel Pn,o-: v

Proof. Suppose xe¢M and yeN. By Theorem 3.1, PM(:H- y) = x.
The definitions of IlPMItm and Q{x) and the first hypothesis give

a(x) & NPyl x(x+7) s o) x(x+¥) = x(x+y)

for all y<N. Hence PN(x). 0, that is, x ekernel Py.

Now suppose X & kernel PN and write x= T+ Xy where x; ¢ M and

1

X, € N. By Theorem 3.1,

0 = PN(x) - PN(II) + ::2 .
By the previous paragraph, PN(xl) = 0, Hence x,=0 and x= x; €M,
lemma 8.2 If x is a projective norm, then Pll o is linear for
y

all subspaces M of Hn'

Proof, By Theorem 4.3, it is sufficient to prove Pil ia linear

if M ia one—dimensional.

Let u be a nonzere element of M, and let u+ N be a support
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hyperplane for the equilibrated convex body {x 3 Hn\ x{x) s:-o&(u)} at uw.
Then ofx)zx(u) for every xewu+N, that is, &({x+u)2&(u) for
every x &€ N. Hence wué& kernel PN' By Theorem 4.2, PN is linear.

Since dim N= p=1, dim kernel PN = 1, and therefore M = kernel PN’
By lemma 6.1, N = kernel I’M and hence P, is linear by an appli-

cation of Theorem 4.l. [ |
Lemma 6.3 Suppose Pll,o( iz linear and N = kernel Pll,q' Then

M = kernel PN,o& (= P . + P

M N,m u )

Proof. First assume M = kernel PN’ let x elin be arbitrary and
express il 88 X= X; +X,, where x,¢ M and xy €N. Then the application
of both sides of PM + PN =X to Xy + X, gives an identity.

Nov assume Py + Py« I. If xeM, then Pg(x) + PN(x) "
X + PN(x) = x, 80 Xeckernel PN' On the other hand, if we have

x e kernel Py, then Pl(x) =x and X &M |
Theorem 6.4 let « he a projective norm. Thern PH « is linear
»

for every subspace M of Hn’ and if N= kermel 1’ll «? then
¢

K = kernel PN,tx

and P + P

M * Pae = I

Proof. This follows directly from Lemmas 6.1, 6,2 and 6.3. J)

Theorem 6.5 Suppose 1 £ k $ m-1, and for every k-dimensional

subspace M of Hn’ PM,& is linear and either
M = kernel PN,ac or, equivalently, Pm,o\ + PN,« = I, (1)

where N = kernel PM o+ Then X is projective,
]

Proof. Assume, for purpose of contradiction, that Q(x)> 1.
Then there will be & k~dimemsional subspace M and x,yeﬂn such that
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J= P“(x’!
u(y) = B, N a(x) = 9(e) x(x) > x(x). (2)

Clearly y# x. Let N= kernel Py By Theorem 3.2 and (2),

0£y-xeN, ofx)=oaly-(yx))<ux(y) (3)

By Lemms 6.3 the two conditioms in (1) are equivalent. We use the
latter condition and apply both sides of it to y, obtaining the
relation ¥ + Pﬂ(y) = ¥, or PN(y) = 0, which contradicts (3). |}

We can now exhibit examples of non~elliptical projective norms

on real:H,. Consgider the norm

2
P P/ .
( lel + !Igl ) if xlx2 > 0,
“lrrz) - a 4 y//q
(ixgt® + ix,1%) if xx, <0,
where 1 + 1 e 1.
)4 q M xg
We shall show that « satisfies
the hypotheses of Theorem 6.5 with
Y,
k=1, By Theorem 4.2, P, . ix -
s x
linear for all one=dimensional \ 1
subspaces M,
Following the notation of C

Theorem €.5, we let u span M and
let v span ¥ = kermel P“. By Fig. 3. Example of a pon-

examination of the unit ball (see elliptical projective norm.

Fig. 3), we see that if u= (1,0} or {0,1), then the hypotheses of
Theorem 8.5 are satisfied. Im other cases, u and v are in adjacent
quadrants, and we can also demand, without loss of generality,

that 8= V= 1.
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Since ve kernel Pﬂ’ w{v+cu) is minimal for e= 0. For
sufficiently emall ¢, v+ ou i3 in the same quadrant with v. Hence

if v is in the first quadrant,
X(v+cu) = ( |1+eclP & lr2+ cngﬁp )l/p. (4)

(The same argument can be used, mutatis mutandis, if v is in the
fourth quadrant. )

We con minimize (4) by differentiating (a(v+ cu))? with respect

to c. Since the mimimum oceurs at ¢= 0, this gives
p + plugllv,| sgn u, sgn v, = 0

Since u and v are in adjacent guadrants, sgn u, Bgn v, = -1, and
hence 1
1 p-1

Ivzl = lual

This gives v, which spans N = kernel PLI' Similarly, we find the
w= (l,rz) which spans kernel Py. Ve compute (note p+q=pq)

L) BT 71
vl = | = | lul = lugl

which shows that M = kernel PN’
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CHAPTER VIX
DUAYT. NORMS AND PROJECTION
If « is a norm om Hn’ the dual norm %p ia defined by

Wz, g}
o «(¥)

ap(x) = ;;zp

Ir u#’ 0 and v is such that {x l {vyx}= 1} is » support hyperplane
for the equilibrated comvex body §x|u«(x)¢ &(u)} at u, then v is

called a dual of u with respect to &. Corcllary 1.2 shows that each

nonzero'u has at least one dual.

We ahall need sewe elementary results about the dwal norm and
the dual.

Proposition 7.1 If uf 0 and v is & dual of m with respect to «,
then U.D(v) = 1/w(e) and u is & dual of v with respect to xpe

Proof. For (v,x)}40, (v, x/(v,x)) = 1. Therefore, by hypoth-
esis, «{ x/("!:) ) = “(x)/ |(7;=)1 » «(u), that is,

1 (v, x)l
x(n) 7 w(x) ’

which holds even for (v,x)= 0, and with equality for x=u. There—
fore OKD(V) - I/Dt(u).
Now aasume (u,x)= 1. Then

L (x, 7)1 i(x,u)l 1
% (x) = ;:g ) e ” ey " %, (),

and hence u is & dusl of v with respect to . B

Corollary 7.2 For all xeﬂn, (xDD(x) = ox).
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Proof. let y be a dual of x with respect to & (if x£ 0). Then
%x(x) = l/un(y). But x is also & dual of y with respect to %ps ond
hence O(DD(x) = I/O(D()’). .

We can also apply Proposition 7.1 te show that if u and v are
duale, then they give equality in the generalized Hilder inequality
Iu(u)un(vﬂ &1, This fact is sometimes used to define dunls.

Proposition 7.3 If %5 is strictly convex, then every nonzero u
has a unique dual with respect to .

Proof. Let v, and v be duals of u with respect to %X, Then
(vl,u)- (vg,u)- 1 and for any scalar ¢,
| e(vypu) + (1-¢) (vpyu)]

o{n)

Otn( ev, + (1—0)1’2 )y 3

1
m = O(D(vl) = O(D(va).

Since op is strictly convex, Vy=T¥ge .
Theorem 7.4 Suppose ugf 0. Then u € kernpel PM x if and enly
y

if there ia a dual v of u with respect to & such that ve MJ‘.

Proof. First assume ve M' and v is a dual of u with respect
to . Then for any xeM, {v,u-x) « (v,u)~ (v,x) = 1; hence
%(u-x) > «(u) and u e kernel P.

Now assume u ¢kernel P.
Then o(u+x)2 afn) for all xeM. N

By Theorem 1.1, there is a sup-~
port hyperplane {x | (v,x) = 1}
for the body {x|o(x)<cofu)}
at u which containg the flat

u+ M., By definition, v is a Fig. 4. Illustration of the
proof of Theorem 7.4.
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dual of u with respect to . Also, for every x¢M, u+x ia on the
hyperplane, that is, (v,u)+ (v,x) = L. Since (v,u)=1, (v,x)=0

and v €M% l
Theorem 7.5 Suppose X and %, are both stricily convex, PM « 18
’
ligear, and
N = kerpel Pll,o& 1
L
then M- = kernel PNJ,’ «y (1)
and hkence PN" ia linear.
1&p
Proof. By Proposition 7.4, for every v eHn there is & unique
dual u with respect to %pe and v is the unique dual of u with
respect to ®, By Theorem 7.4,
v € kernel PNL’“I; {=> wueN,
By a second application of Theorem 7.4, weN<=)v¥ ell"', gince
N=kernel P, . . These two equivalences prove (1). |
]
Theorem 7.6 Suppose % and &, are both etrictly comvex, PM « ina
¥
linear, and
N = kernel PM,“ H
H
then PNL, - = Pll,ot )

Proof. By Theorem 7.5, PNJ. x ia linear. It is aufficient
D

to show that for arbitrary x,yeﬁn,

00 (=0 B, - ()
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= (x, PN"‘,uD(y}) - (PH,“(X), 7) . (2)

Let =x= Xy + Xy where € M, X, € N, and let ¥= T+ T where

T € N, Ty € ML Then, by using Theorem 7.5, (2) can be demonstrated
easily. .

Theorem 7.7 If  and &, are both strictly converx, ofa) = Q(txn).

Proof. ILet M be an (n-1)- dimensional subspace of Hn such
that (o) = ||1=n'“llw, and let N« kernel P, . Then by

M,
Theorem 4.2, PM,K is limear, and by Theorem 7.8, PNL,o(n . (PM,M )H.
Hence
H
Q(“D) > I\Pnl’un“anun = “(P]I,N) "uDuD
opl (B )(x) )
) x;?(:l xp(x)
(x, 2, (7))
o aup
Ifygo (XD(I) “(7)
. I (. W c0))
o \*O7 3 T« )
P, (7))
= ;;‘lg —--;-;-;;—- = "PH’“HK& = Q(«).
To establish the reverse inequality Q(«) = Q(un), interchange the
roles of « and o). '

Theorem 7.8 If o is a projective norm, then txn is strictly

CONVeXs

Proof. Let v and Vo be two vectors such that

O‘D( 0‘71+(1—¢)V2 ) 2 un(vl) - ND(VP‘J (3)




ag
for all secalars c. Ve must prove that V)= Vg If vy=v, =0, this
result is trivial; therefore we assume 71;‘ 0;‘72.

The set K = {ev1+ (1---c)1r2 |e is a acu.la.r] ig o flat contain-
ing v, and v, ard such that xeK = o (x)20,(v;) by (3). By
Theorem 1.1, there is a aupport hyperplane {x | (wyx)= 1} contain-
ing K.

Then uw i& a dual of hoth 1 and vy with respect to % and
hence A8} and v, are both duals of n nth rospect to %. Let M= ivll
and N= {v } 3 then by Theorem 7.4, u € kernel P“, and w € kernel PN,u
Since the kernels are one~dimensional, heth are equal to the subspace
L. spanned by u. By Theorem 6.4, M~ N= kernel PL,ot' Hence "1 and vy

are linearly dependent, and V)= bva for some scalar b. We substi-
tete into (3) to obtain

o (((b—l)c+ 1)?2) -3 qn(vz).

Hence |(b=1)c+1}%1 for all scalars ¢, which implies that ba 1
and v =v,. Therefore x is strictly convex. [ |

Theorems 7.7 and 7.8 togoether give

Corollary 7.9 If ® is a projective norm, so is O(D.
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CHAPTER VIII
THE GENERALIZED RECIPROCAL

Suppose that throughout this chapter

® is a striectly conmvex norm on lln,
p ia a strictly convex nerm on Hm’
Ft Hm-b Hn is a linear fuonction,
R = renge F,
K = kernel F.

Then let
xE Hn be arbitrary,

TeH be such that P(y) = P

R'“(x)s
x' =y - By is(y), that iz, the point on the flat y+K
]
which ig clogest to the origin.

Fig. 5. The geometric definition of the generalized
reciprocal of a linear function,
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Kow x' is independent of the choice of ¥, for a different choice
of y would merely give another point on the flat y+ K. Therefore,
there is & well-defined function F-:‘-F vhich carries x into x'. It
is called the generalized reciprocal of F with respect to & and f§.

Where the norms are undersatood, the notation FYowill be used instead.

If « and F are the inner product norms, then F' is the Moore—
Penrose reciprocal of F. Many properties of the Moore-Penroae
reciprocal are specializations of the propertiesa which we are about

to derive. (See alao Ben-Iarael.)

The following properties of F* are consequences of the defi-

nitiont
(i) F* is a homogeneous function,
(ii) if Pn,u and PK!F are linear, so is FT,
(iii) Lernel F* = Kernel PR,V- s
(iv) range F* = kermel PK,# .
+
(v) F'F = I~ pk;“_,
. +
(vi) FF = ZPB’ 6’
(vii)  if ¥ is linear, rank F* « rank F,

(viii) 4f F is nonsingular, F' = F~),

{ix) for nonzero scalars ¢, (eF)* = %-F"'.

Properties (i) and (ii) are obvious.

If xckernel PB.,u’ then x'a 0 (following our previoms nota-
tion}. If x¢kernel Pp 7 then the flat y+K does not comtain 0,
1]
and x' £ 0. Hence we have (§ii).
By Theorem 3.1, P x') = P -P = 0, P =
¥ ’ K,ﬁ( ) K,#(Y K!P(Y)) 9 ir K,F('l) 0

them z = y= PK,F(y) for some y, and x = F'(F(y)). Hence we have
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property (iv).

To evaluate F'(F(z)) we ean use y= 3. Then F'(F(z)) =
z - PK’P(z) and we have {v).

By the definition, F{F'(x)) = F(x'} = F(y- PK’F()T)) = F(y)
= PR’“(x), and we have (vi).

If F* is linear, then by (v) PK,F i linear. By (iv) we have
rank F* = dim kernel Pl'.,ﬁ = m~dim K « rank F, which proves (vii).

Properties (viii) and (ix) are obvicus.

Properties (v}, (vi) and (vii) can be used as an alternate
definition of F' in some casesy, a8 the following theorem shows.

Theorem 8,1 If &3 Hn—b Hm is a linear function sueh that

GF = I-PK’F, (1)
FG = P

R ? (2)
rank G = renk F ,

then G = F*.

Proof. let x¢R; then x=F(y) for some yeH, and

6(x) = 6(F(7)) = (1-B 5)(3) = F'(F(3)) = F*(x), (3)

by (1) and property (v).

For any wel ,

G(Fp o(v) = F*(Pn,u(r)) = F'(¥),

by {3) with x= P, o“(w—) and the definition of F'. Therefore, we
y

have range F' c range G. The projection functioms in (1) and (2)
are linear, and hence F* is linear by property (ii). Then by
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property (vii) and hypothesis, rank F' = rank F = rank G. There-
fore range F'a range G.

Now let x ékernel P, . . Then FY(x) = 6 by property (1ii),
s

G(x) € range & = range F*, and by (2),
(G(x)) = ?R’u(:) = 0.

Hence G(x) €K algo. Since by property {iv) and Theorem 3. 2, range F*
and K have only 0 in common, G(x) = 0 = F*(x).

Since R and kernsl PR. o together apan Bn’ the fact that we
’
have G(x)=F'(z) for x on these twe sets shows that GaF". |

Lerma 8.2 If M and N are subspaces of Hn and dim N> dim M,

then there iz at least one nonzero =x ¢ N Nkernel PM o
]

Proof. Let S be the sphere %xeﬂ! {x,x)=1} . Then P gives
a continuous mapping from S to M. By the Borsuk-Ulam Theorem (see
Spanier, p. 266), there is en x €S suech that P(x) = P(-x). Since
P is a homogeneous function, P(x)= 0. . .

Theorem 8.3 If F: Hm-v ﬂn is a linear function of positive

rank, then

"F+II¢P £ inf {“G““F lrank(F+ G) < rank FS

b < 2
e

where b= 1 if rank F=n, and b= Q{x) otherwise,

&

(4)

Proof, Suppose rank(F+ G) < rank F; then
dim kerpel{F+G) > dim K.

By Lemma 8.2, there is a nonzero x ¢ kernel(F+G), i.e.,
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‘F{x) + G{x) = o,
-F*(F(x)) = FH(6(x)), (5)

such that x € kernel rK,u.' Then by property (v), F*(F(x)) = x,

and (5) becomes
-x = F'(6(x)),
which yields
plx) = p(F*(6(x))) < LA INIC C TR g P Hellys o),
and establishes the first inequality in (4).
Nm‘r let y£ 0 be such that

BE () = NFtllg sl (6)

and let T - PR’“(I)- (7)

From the definition of F' we have
F'(s) = FH(y). (8)

Also, &(z) ¢ UP) N (7} € 0(x) x(y). In the case where rank Fan
R,
we have R=H , 2=y and %(z)=x(y). Hence

x(z) = b o(y), (9)
vhere b is as in (4). Then (6), (8) and (9) together yield
B () > ¢ I llg(a) (10)

Nov let w, = F*(2); clearly '1’{ 0. Then by property (iv)

¥; € range F* = Lernel P P. Hence PK'#(YI) = 0, thet is,

K,,
]G(vla-v) 3 P‘('l’ for all v¢K, that is, P(w) > P(wl) for all w in

the flat v+ K. By Theorem 1.1, there is a support hyperplane for
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the equilibrated comvex body {weﬁm\ piv) s.p(wl)} at w, vhich
coptaing v, + K. This hyperplane can be writien as

H
{11 + 3 LA l Cor Cgy weey € scalara}, (11)

i=2

vhere wy, ‘73, s+; W 5pan s subspace which imeludes K.
Kow let Gt B - Hn be the linear fumction for which

G(I‘I) - G(F+(z}) = =%y | (12)

G("'i) n 0, ia= 2,3,-.-,‘20 (13)

Since Wgr Wgs wesy W, SpPan all of K, (13) implies that (F+ G)(v)-D
for all wveEK. Also, for s which does mot belong to K, we have,
by (12), property (vi) and (7),

(F+ G)(‘I‘I) - F(rl)-— z = F(F+(z})- z = Pn,u(z}- z = 0.

Thereforae, rank(F + G} < rank ¥ , (14)
m
For some nonzero we&ll , which we can write as w = Z d,w. s
i=l
we have
(- d, z)
ol = G5 - T o)
Bllia g

If d,=0 ve would have an absurdity, since GEO by (12). Therefore,
we can divide by {d,l to obtain
%(z)

P('l * 2:2 ("'i/dl)"i)

The denominator is the norm of a point on the support hyperplane (11);
Hence by (10)

lellyp =

wlx) wfz) b

%
sy G el

(1s)
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The second inequality in (4) then follows from (14) and (15).

The third inequality in (4) follows froem Corollery 5.2. B

In the case where F is nomsingular, (4) reduces to

b |

inf {HG“‘:P ‘F-i-G singular} "F_’“
-1

This result has alge been proved by others {see alsc Franck p. 129%,
Kshan p. 775, and Maitre p. 210),

Theorem 8.4 A necessary and eufficient condition that (FN ) ur
for every F is that o and §# be projective norms,

Proof. If « and § are projective norms, then all projections
are limear by Theorem 6.4, and by property (ii), so ie F'. Let
R' = range Ft and K' = kernel F+. Then by Theorem 6.4 and properties
(i), (iv), (v) end (vi),

F'F =« I =P

K, = PR'!F »
+

FFP = PR,O& = I-PK,

s

Also, rank F'= rank F by property (vii); hence Fa« (F*)* by
Theorem 8.1.

Comversely, if (F*} 'z F, then

+ + oyt
IPK’P=FF=F(F)-=PR,’# ,
+ +y+
pa’“., FFT = (F'Y'F = I—PK,'u y
and o and 8 are projective norms by Theorem 6.5. h

Theorem 8.5 If o and @ are projective norms, then

(FEI;D"‘D - (Ex)" . (16)
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Proof. By properties (vi) and (v), and by Theorem 6.4,

+
FF¥F = PR,ot. a J - PR,“, M = kernel PR’“ .
+
F'F a I-PK,ﬂ - PN!F, N = kernel PK:F s
By Theorem 6.4, R = kernel P and K = kernel P_ .. B

Theorem 7.8, LN and PD are strietly convex. Then by Theorem 7.5,

and

+ H_H
(F')'F = I—PR.L,qD '

FH (F+)H = PKL’FD -

Sinee R* = kernel ¥! amd K' = renge FH, (18) follows by
Theorem 8.1, with G replaced by (I*"*')Fl and F replaced by Fa,

It is conjectured that {16) is true even if x and P are not
projective norms.
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